Nonlinear Decentralized Control for Future Grids

Brian Johnson
Assistant Professor
University of Washington
Department of Electrical and Computer Engineering

November 1st 2019
The Future Grid

- Green: Grid Forming (GFM)
- Brown: Grid Following (GFL)
- Blue: Communication gateway
- Downward arrows: Loads
- Lines: Lines
The Ideal Power Electronics Interface

Wishlist

- Works across high to zero inertia
- Compatible in both grid-connected & islanded
- Robustly synchronizes in large networks
- Rapid convergence to steady state
- Can act on exogenous setpoints
- Produces high quality voltage waveform
- Controller has unambiguous design procedure
- Integrated droop functions
Seeking Inspiration from Historical Figures

Balthasar van der Pol
1889-1959

Aleksandr Andronov
1901-1952
Seeking Inspiration from Historical Figures & their Models

\[\dot{x}_1 = \varepsilon \omega_0 (\sigma x_1 - \alpha x_1^3) - \omega_0 x_2, \]
\[\dot{x}_2 = \omega_0 x_1. \]

Balthasar van der Pol
1889-1959

Aleksandr Andronov
1901-1952

\[\dot{x}_1 = \varepsilon \omega_0 (\sigma x_1 - \alpha \|x\|^2 x_1) - \omega_0 x_2, \]
\[\dot{x}_2 = \omega_0 x_1. \]
Circuit Interpretations of Nonlinear Oscillators

\[\dot{x}_1 = \varepsilon \omega_0 (\sigma x_1 - \alpha x_1^3) - \omega_0 x_2, \]
\[\dot{x}_2 = \omega_0 x_1. \]

\[\downarrow \]

\[C \frac{dv_C}{dt} = -i_L - \alpha v_C^3 + \sigma v_C, \]
\[L \frac{di_L}{dt} = v_C, \]

where \(\varepsilon := \sqrt{\frac{L}{C}}. \)

\[\downarrow \]

\[\text{Circuit for van der Pol} \]

\[\dot{x}_1 = \varepsilon \omega_0 (\sigma x_1 - \alpha \|x\|^2 x_1) - \omega_0 x_2, \]
\[\dot{x}_2 = \omega_0 x_1. \]

\[\downarrow \]

\[C \frac{dv_C}{dt} = -i_L - \alpha (v_C^2 + \varepsilon^2 i_L^2) v_C + \sigma v_C, \]
\[L \frac{di_L}{dt} = v_C, \]

where \(\varepsilon := \sqrt{\frac{L}{C}}. \)

\[\downarrow \]

\[\text{Circuit for Andronov} \]
Oscillator Design

nonlinear VOC system

VOC parameters:
\(\sigma, L, C, \alpha, \ldots \)

performance criteria:
- voltage regulation
- frequency regulation
- dynamic response
- harmonics limits

harmonics

averaged polar model

\[|V| \quad \omega \]

perturbation methods

averaging methods

\[\sigma, L, C, \alpha, \ldots \]
Key Parametric Relations

\[\omega = \left(1 - \frac{\varepsilon^2 \sigma^2}{16}\right) \omega_0 \]

- frequency

\[\tau_{\text{rise}} = \frac{6}{\varepsilon \sigma \omega_0} \]

- speed

\[\frac{\text{third fundamental}}{\text{fundamental}} = \frac{\varepsilon \sigma}{8} \]

- harmonics

Circuit for van der Pol

Circuit for Andronov
Key Parametric Relations

\[\omega = \left(1 - \frac{\varepsilon^2 \sigma^2}{16}\right) \omega_0 \]

frequency

\[\omega = \omega_0 \]

speed

\[t_{\text{rise}} = \frac{6}{\varepsilon \sigma \omega_0} \]

harmonics

\[\begin{align*}
\frac{\text{third}}{\text{fundamental}} &= \frac{\varepsilon \sigma}{8} \\
\frac{\text{third}}{\text{fundamental}} &= 0
\end{align*} \]

Circuit for van der Pol

\[\begin{align*}
-1 & \quad L \\
\sigma & \quad C \\
\alpha v_C^3 & \quad v_C
\end{align*} \]

Circuit for Andronov

\[\begin{align*}
-1 & \quad L \\
\sigma & \quad C \\
\alpha v_C^3 & \quad v_C
\end{align*} \]
Key Parametric Relations

\[\omega = \left(1 - \frac{\varepsilon^2 \sigma^2}{16}\right) \omega_0 \]

\[t_{\text{rise}} = \frac{6}{\varepsilon \sigma \omega_0} \]

\[\frac{\text{third}}{\text{fundamental}} = \frac{\varepsilon \sigma}{8} \]

- Circuit for van der Pol

\[\omega = \omega_0 \]

\[t_{\text{rise}} = \frac{6}{\varepsilon \sigma \omega_0} \]

\[\frac{\text{third}}{\text{fundamental}} = 0 \]

- Circuit for Andronov

Circuit for van der Pol

Circuit for Andronov
Dynamic Performance Comparison

Parameters chosen for $\varepsilon \sigma = 1$

- off-nominal frequency, low quality waveform, fast

- Circuit for van der Pol

Parameters chosen for $\varepsilon \sigma = 1$

- nominal frequency, high quality waveform, fast

- Circuit for Andronov
Dynamic Performance Comparison

Parameters chosen for $\varepsilon\sigma = 0.05$

- Nominal frequency, high quality waveform, sluggish

Parameters chosen for $\varepsilon\sigma = 1$

- Nominal frequency, high quality waveform, fast

Circuit for van der Pol

- Circuit for Andronov
Revisiting the Wishlist

<table>
<thead>
<tr>
<th>Feature</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Works across high to zero inertia</td>
<td>✓</td>
</tr>
<tr>
<td>Compatible in both grid-connected & islanded</td>
<td>✓</td>
</tr>
<tr>
<td>Robustly synchronizes in large networks</td>
<td>?</td>
</tr>
<tr>
<td>Rapid convergence to steady state</td>
<td>✓</td>
</tr>
<tr>
<td>Can act on exogenous setpoints</td>
<td>✓</td>
</tr>
<tr>
<td>Produces high quality voltage waveform</td>
<td>✓</td>
</tr>
<tr>
<td>Controller has unambiguous design procedure</td>
<td>✓</td>
</tr>
<tr>
<td>Integrated droop functions</td>
<td>✓</td>
</tr>
</tbody>
</table>

Circuit for van der Pol

Circuit for Andronov
Practical Implementation on Hardware

\[P^* \]
\[Q^* \]

\[v_\alpha, v_\beta \]
\[i_\alpha, i_\beta \]
\[g_i(i_L, v_C) \]
\[L \]
\[C \]

\[\frac{1}{\|v_{\alpha \beta}\|^2} \begin{bmatrix} v_\alpha & v_\beta \\ v_\beta & -v_\alpha \end{bmatrix} \]
\[\cos \theta \quad -\sin \theta \]
\[\sin \theta \quad \cos \theta \]

\[\alpha, \beta \]
\[\text{abc} \]

Voltage-reactive power curve

(a) Voltage-reactive power curve

(b) Frequency-real power curve
Demo Description

Captain: Dr. Minghui Lu
First Officer: Rahul Mallik

\[P_1, P_2, P_3 \]

\[v_1, v_2, v_3 \]

\[i_1, i_2, i_3 \]

\[\omega = 60 \text{ Hz} \]

\[3 \text{ inverters} \]

\[3 \text{ loads} \]

\[3 \text{ grid} \]

\[\text{Green: ON, Red: OFF} \]
Future Innovations Needed for Power System Utilization

Partition controls by timescales

- Primary: Fast communication-free GFM controls for stabilization
- Secondary/Tertiary: Distributed controllers balance supply-demand
Thanks for your attention!